Estimation of infection and recovery rates for highly polymorphic parasites when detectability is imperfect, using hidden Markov models.
نویسندگان
چکیده
A Bayesian hierarchical model is proposed for estimating parasitic infection dynamics for highly polymorphic parasites when detectability of the parasite using standard tests is imperfect. The parasite dynamics are modelled as a non-homogeneous hidden two-state Markov process, where the observed process is the detection or failure to detect a parasitic genotype. This is assumed to be conditionally independent given the hidden process, that is, the underlying true presence of the parasite, which evolves according to a first-order Markov chain. The model allows the transition probabilities of the hidden states as well as the detectability parameter of the test to depend on a number of covariates. Full Bayesian inference is implemented using Markov chain Monte Carlo simulation. The model is applied to a panel data set of malaria genotype data from a randomized controlled trial of bed nets in Tanzanian children aged 6-30 months, with the age of the host and bed net use as covariates. This analysis confirmed that the duration of infections with parasites belonging to the MSP-2 FC27 allelic family increased with age.
منابع مشابه
Modeling parasite infection dynamics when there is heterogeneity and imperfect detectability.
Understanding the infection and recovery rate from parasitic infections is valuable for public health planning. Two challenges in modeling these rates are (1) infection status is only observed at discrete times even though infection and recovery take place in continuous time and (2) detectability of infection is imperfect. We address these issues through a Bayesian hierarchical model based on a...
متن کاملمدل یابی انتشار بیماری های عفونی بر اساس رویکرد آماری بیز
Background and Aim: Health surveillance systems are now paying more attention to infectious diseases, largely because of emerging and re-emerging infections. The main objective of this research is presenting a statistical method for modeling infectious disease incidence based on the Bayesian approach.Material and Methods: Since infectious diseases have two phases, namely epidemic and non-epidem...
متن کاملIntroducing Busy Customer Portfolio Using Hidden Markov Model
Due to the effective role of Markov models in customer relationship management (CRM), there is a lack of comprehensive literature review which contains all related literatures. In this paper the focus is on academic databases to find all the articles that had been published in 2011 and earlier. One hundred articles were identified and reviewed to find direct relevance for applying Markov models...
متن کاملExtended Geometric Processes: Semiparametric Estimation and Application to ReliabilityImperfect repair, Markov renewal equation, replacement policy
Lam (2007) introduces a generalization of renewal processes named Geometric processes, where inter-arrival times are independent and identically distributed up to a multiplicative scale parameter, in a geometric fashion. We here envision a more general scaling, not necessar- ily geometric. The corresponding counting process is named Extended Geometric Process (EGP). Semiparametric estimates are...
متن کاملSpeech enhancement based on hidden Markov model using sparse code shrinkage
This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics in medicine
دوره 22 10 شماره
صفحات -
تاریخ انتشار 2003